[-(y^4-y^2+1)-(y^4+6y^2+1)]+(8y^4-7y^2-12)=

Simple and best practice solution for [-(y^4-y^2+1)-(y^4+6y^2+1)]+(8y^4-7y^2-12)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for [-(y^4-y^2+1)-(y^4+6y^2+1)]+(8y^4-7y^2-12)= equation:


Simplifying
[-1(y4 + -1y2 + 1) + -1(y4 + 6y2 + 1)] + (8y4 + -7y2 + -12) = 0

Reorder the terms:
[-1(1 + -1y2 + y4) + -1(y4 + 6y2 + 1)] + (8y4 + -7y2 + -12) = 0
[(1 * -1 + -1y2 * -1 + y4 * -1) + -1(y4 + 6y2 + 1)] + (8y4 + -7y2 + -12) = 0
[(-1 + 1y2 + -1y4) + -1(y4 + 6y2 + 1)] + (8y4 + -7y2 + -12) = 0

Reorder the terms:
[-1 + 1y2 + -1y4 + -1(1 + 6y2 + y4)] + (8y4 + -7y2 + -12) = 0
[-1 + 1y2 + -1y4 + (1 * -1 + 6y2 * -1 + y4 * -1)] + (8y4 + -7y2 + -12) = 0
[-1 + 1y2 + -1y4 + (-1 + -6y2 + -1y4)] + (8y4 + -7y2 + -12) = 0

Reorder the terms:
[-1 + -1 + 1y2 + -6y2 + -1y4 + -1y4] + (8y4 + -7y2 + -12) = 0

Combine like terms: -1 + -1 = -2
[-2 + 1y2 + -6y2 + -1y4 + -1y4] + (8y4 + -7y2 + -12) = 0

Combine like terms: 1y2 + -6y2 = -5y2
[-2 + -5y2 + -1y4 + -1y4] + (8y4 + -7y2 + -12) = 0

Combine like terms: -1y4 + -1y4 = -2y4
[-2 + -5y2 + -2y4] + (8y4 + -7y2 + -12) = 0

Remove brackets around [-2 + -5y2 + -2y4]
-2 + -5y2 + -2y4 + (8y4 + -7y2 + -12) = 0

Reorder the terms:
-2 + -5y2 + -2y4 + (-12 + -7y2 + 8y4) = 0

Remove parenthesis around (-12 + -7y2 + 8y4)
-2 + -5y2 + -2y4 + -12 + -7y2 + 8y4 = 0

Reorder the terms:
-2 + -12 + -5y2 + -7y2 + -2y4 + 8y4 = 0

Combine like terms: -2 + -12 = -14
-14 + -5y2 + -7y2 + -2y4 + 8y4 = 0

Combine like terms: -5y2 + -7y2 = -12y2
-14 + -12y2 + -2y4 + 8y4 = 0

Combine like terms: -2y4 + 8y4 = 6y4
-14 + -12y2 + 6y4 = 0

Solving
-14 + -12y2 + 6y4 = 0

Solving for variable 'y'.

Factor out the Greatest Common Factor (GCF), '2'.
2(-7 + -6y2 + 3y4) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(-7 + -6y2 + 3y4)' equal to zero and attempt to solve: Simplifying -7 + -6y2 + 3y4 = 0 Solving -7 + -6y2 + 3y4 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -2.333333333 + -2y2 + y4 = 0 Move the constant term to the right: Add '2.333333333' to each side of the equation. -2.333333333 + -2y2 + 2.333333333 + y4 = 0 + 2.333333333 Reorder the terms: -2.333333333 + 2.333333333 + -2y2 + y4 = 0 + 2.333333333 Combine like terms: -2.333333333 + 2.333333333 = 0.000000000 0.000000000 + -2y2 + y4 = 0 + 2.333333333 -2y2 + y4 = 0 + 2.333333333 Combine like terms: 0 + 2.333333333 = 2.333333333 -2y2 + y4 = 2.333333333 The y term is -2y2. Take half its coefficient (-1). Square it (1) and add it to both sides. Add '1' to each side of the equation. -2y2 + 1 + y4 = 2.333333333 + 1 Reorder the terms: 1 + -2y2 + y4 = 2.333333333 + 1 Combine like terms: 2.333333333 + 1 = 3.333333333 1 + -2y2 + y4 = 3.333333333 Factor a perfect square on the left side: (y2 + -1)(y2 + -1) = 3.333333333 Calculate the square root of the right side: 1.825741858 Break this problem into two subproblems by setting (y2 + -1) equal to 1.825741858 and -1.825741858.

Subproblem 1

y2 + -1 = 1.825741858 Simplifying y2 + -1 = 1.825741858 Reorder the terms: -1 + y2 = 1.825741858 Solving -1 + y2 = 1.825741858 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + y2 = 1.825741858 + 1 Combine like terms: -1 + 1 = 0 0 + y2 = 1.825741858 + 1 y2 = 1.825741858 + 1 Combine like terms: 1.825741858 + 1 = 2.825741858 y2 = 2.825741858 Simplifying y2 = 2.825741858 Take the square root of each side: y = {-1.680994306, 1.680994306}

Subproblem 2

y2 + -1 = -1.825741858 Simplifying y2 + -1 = -1.825741858 Reorder the terms: -1 + y2 = -1.825741858 Solving -1 + y2 = -1.825741858 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '1' to each side of the equation. -1 + 1 + y2 = -1.825741858 + 1 Combine like terms: -1 + 1 = 0 0 + y2 = -1.825741858 + 1 y2 = -1.825741858 + 1 Combine like terms: -1.825741858 + 1 = -0.825741858 y2 = -0.825741858 Simplifying y2 = -0.825741858 Reorder the terms: 0.825741858 + y2 = -0.825741858 + 0.825741858 Combine like terms: -0.825741858 + 0.825741858 = 0.000000000 0.825741858 + y2 = 0.000000000 The solution to this equation could not be determined.This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.

See similar equations:

| -5-(5-4p)= | | 2x+x+1.25=8 | | y+10=12 | | 4b-12+4b=-9 | | 300=13x | | 25x^2-7x+1+17x=0 | | 33=2u+11 | | (3x-14)-(-4x+5)= | | 7=3.5m | | 33=2u+1 | | 25x^2-7x+1=-17x | | 39=3c | | 2p^2-8p-6=0 | | z/6+4=6-z/6 | | (x-5)(x+8)=5(x-5) | | 4z-2=10 | | 2x^2-8p-6=0 | | 64y+10=12 | | 2(x+4)+2=10 | | (7x+3)(3x^2-11x-4)=0 | | 61=4x+9 | | 7-4y=8-5y | | 8x-.25=7.75 | | 9x-2=5x+19 | | -9x^2+57x-60=0 | | 4w-9=39 | | 7(x+1)=4+4(3x-2) | | 12x-13=107 | | 5x^2+4x-9x=0 | | .6x=11 | | 6(7x-7)-7=42x-49 | | 2246-x*2=10000 |

Equations solver categories